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Abstract

We present a new nonlinear algorithm for the e�cient and accurate solu-

tion of isothermal and nonisothermal phase change problems. The method

correctly evolves latent heat release in isothermal and nonisothermal phase

change, and more importantly, it provides a means for the e�cient and accu-

rate coupling between temperature and concentration �elds in multi-species

nonisothermal phase change. The method rigorously conserves energy both

globally and locally. Newton-like super-linear convergence is achieved in the

global nonlinear iteration, without the complexity of forming or inverting

the Jacobian matrix. This "Jacobian-free" method is a combination of an

outer Newton-based iteration and an inner conjugate gradient-like (Krylov)

iteration. The e�ects of the Jacobian are probed only through approximate

matrix-vector products required in the conjugate gradient-like iteration. The

methodology behind the Jacobian-free Newton-Krylov solution method is

given in detail. We demonstrate the properties of this method which allow

the formulation of an implicit solution algorithm having enthalpy as the de-

pendent variable. The performance of the method is demonstrated on phase

change problems for a pure material undergoing isothermal solidi�cation and

a binary eutectic alloy undergoing nonisothermal solidi�cation.
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Nomenclature

Cp = heat capacity

Cl = solute concentration in liquid

Cs = solute concentration in solid

h = phase enthalpy

H = enthalpy

J = Jacobian matrix

k = partition coe�cient

L = latent heat of fusion

M = preconditioning matrix

ml = liquidus slope

St = Stefan number

T = temperature

t = time

Teut = eutectic temperature

Tf = fusion temperature

Tl = liquidus temperature

Tm = melting temperature

u = velocity

v = Krylov vector

x = position

y = preconditioned Krylov vector
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Nomenclature (cont.)

Greek

� = thermal di�usivity

� = small perturbation

�s = solid volume fraction

� = thermal conductivity

Subscripts

l = liquid

s = solid
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1 Introduction

Numerical simulation is playing an increasingly important role in support of

industrial casting processes. The goal of simulations is to accurately capture

the solidi�cation dynamics in pure materials, and in multicomponent alloys.

To achieve this goal a numerical algorithm must accurately evolve the latent

heat in an isothermal solidi�cation process, and it must also accurately couple

the temperature and concentration �elds in the nonisothermal solidi�cation

of multicomponent alloys.

Implicit solution algorithms are often preferred to avoid undesirable nu-

merical stability (time step) restrictions. The most common form of the en-

ergy equation for implicit methods uses temperature as a dependent variable

[1, 2, 3]. This form of the energy equation includes a latent heat source term

which is not a single valued function of temperature for isothermal solidi�ca-

tion. Several strategies have been developed for integrating this source term

implicitly. Those strategies which attempt to conserve energy are forced to

�x locations on the grid which are undergoing isothermal solidi�cation [1, 2].

At these locations, where the energy equation is actually being solved for

enthalpy, a local change of dependent variable has occurred.

We present a fully implicit solution method for the enthalpy form of the

energy equation. The front evolves in a completely self-consistent fashion and

there is no local switching of dependent variables. Enthalpy is the dependent

variable in our nonlinear iterations, and temperature is represented as a

local function of enthalpy and solid volume fraction in a pure material; in an

alloy, temperature is represented as a local function of enthalpy, solid volume
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fraction, the phase diagram, and a local scale transport model.

For multicomponent problems with ow, our algorithm assumes that

species advection is modeled in a time explicit fashion, consistent with the

assumption in Ref. [2]. However, the basic numerical method presented here

could be used as a general ow solver [4, 5, 6]. One could solve the coupled

system for a solidi�cation problem with ow with this technique, which is

currently under investigation.

We view our algorithm as a departure from existing �xed grid implicit

methods. It is an implicit method with enthalpy as the dependent variable,

a global Newton iteration is performed without forming or inverting the

Jacobian matrix, and the solidi�cation front is captured rather than being

tracked. With this in mind, our primary motivation is to clearly describe

the details of the method. Detailed performance comparisons with existing

algorithms will be the focus of a subsequent study.

In the following sections we discuss the issue of an enthalpy versus a

temperature form of the energy equation. We present the structure of our

discrete implicit equation for enthalpy, and the associated temperature func-

tion. This is illustrated for a pure material Stefan problem and for a binary

eutectic alloy with a simple local scale model. Details of our Newton itera-

tion are then presented , speci�cally we discuss how the Newton iteration is

accomplished without forming or inverting the Jacobian. We conclude with

some typical performance results for a pure material Stefan problem and for

a binary eutectic alloy.
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2 Temperature or Enthalpy Formulation

We start with the de�nition of a two-phase mixture energy equation appro-

priate for materials undergoing solid-liquid phase change. The subscript s

denotes the solid phase and the subscript l denotes the liquid phase. In

enthalpy form, the evolution of energy of the solid-liquid mixture is given by:

@[�H]

@t
+r � (�lhlul)�r � (�rT ) = 0; (1)

where the mixture density is,

[�] = �s�s + (1� �s)�l; (2)

and the mixture volumetric enthalpy is,

[�H] = �s�shs + (1� �s)�lhl: (3)

The phase enthalpies are,

hs = Cp;sT; (4)

hl = Cp;lT + L: (5)

Here � is density, u is velocity, T is temperature, �s is the solid volume

fraction, � is the thermal conductivity, Cp is the heat capacity, and L is the

latent heat of fusion. For simplicity, and ease of communication, we present

our method with the following assumptions:

1. one spatial dimension;
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2. no ow in the liquid (ul = 0 );

3. constant thermodynamic properties ( �; �;Cp; L ) within phases;

4. and equal thermodynamic properties between phases (�s = �l, , etc.).

These assumptions are not necessary for our algorithm, but rather simplify

the discussion that follows.

These assumptions result in a simpli�ed mixture enthalpy equation,

�
@H

@t
� �

@

@x
(
@T

@x
) = 0; (6)

whereH = CpT+(1��s)L. Upon substitution into Eq.(6) and rearrangement

we can obtain the temperature form of the energy equation.

@T

@t
� �

@

@x
(
@T

@x
) = �

L

Cp

@(1� �s)

@t
; (7)

where � = �=(�Cp). This form of the energy equation is most often employed

in implicit �xed grid methods for phase change problems [1, 2, 3]. Various

strategies have been developed for integrating the source term implicitly while

maintaining energy conservation in the phase change region [1, 2, 3]. The

main di�culty with this approach is evident in Fig. 1, where a pure material

enthalpy-temperature relation is depicted. It is clear that there exists a

range of possible values for H at Tm(the melting temperature), i.e. there

is not a unique H(Tm). The in�nite slope at this point is also observed in

nonisothermal solidi�cation for alloys with a eutectic point. The temperature

version of the energy equation at the front is therefore ill-posed because

H(Tm) is not single-valued. At the front, T is constant and �s is a function
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of enthalpy through the relationship H � CpTm = (1 � �s)L. This non-

uniqueness is avoided in standard implicit methods by �xing the temperature

T at Tm, whereby the energy equation is solved for �s with the time derivative

of temperature set to zero. This can be shown to be equivalent to solving for

H at the front. Substituting H �CpTm = (1� �s)L into Eq.(7) (with @T
@t

= 0

), the energy equation at the front becomes,

�
@

@x
(
@T

@x
) =

1

Cp

@(H � CpTm)

@t
; (8)

or upon rearrangement,

�
@

@x
(
@T

@x
) = �

@(H)

@t
; (9)

This represents a local exchange in dependent variables at the front from T to

H, and requires one to �x the front position over a nonlinear iteration within

a time step. This arti�cial "�xing" of the front position may restrict time

step size for nonlinear convergence and accuracy. However, this approach is

certainly to be preferred to the apparent heat capacity method in terms of

accuracy and energy conservation [1]. It is insightful to note that Eq.(9) is

precisely the form of the energy equation that we started with, Eq.(6).

By employing enthalpy as the dependent variable on the entire grid we

need to evaluate T as a function of H, which is depicted in Fig. 2 for a pure

material. Here we can clearly see that temperature is a unique, single-valued

function of enthalpy.
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3 The Discrete Implicit Enthalpy Equation

In this section a discrete implicit solution to the enthalpy form of the en-

ergy equation is formulated. This results in a nonlinear system of algebraic

equations. We demonstrate how to incorporate temperature as a function of

enthalpy for both pure materials and alloys. A clear understanding of our

nonlinear algebraic system is essential for describing the unique way in which

we solve our nonlinear problem using a Newton iteration without forming the

Jacobian.

Assuming that we can express temperature as a function of enthalpy,

T = T (H), we write the enthalpy form of the energy equation as;

@H

@t
�
�

�

@

@x

"
@T (H)

@x

#
= 0: (10)

Using a simple �rst-order in time (backward Euler), second-order in space

discretization on a uniform grid, a discrete version of this equation can be

written;

Hn+1
i �Hn

i

�t
�

�

��x2
[T (Hn+1

i+1 )� 2T (Hn+1
i ) + T (Hn+1

i�1 )] = 0; (11)

where i is the grid index, n is the time step index, �t is the time step, and

�x is the grid spacing. It is straightforward to construct a second-order in

time, second-order in space, method as well. One could consider the Crank-

Nicolson method,

Hn+1
i �Hn

i

�t
�

�

��x2
[T (Hn+1=2

i+1 ) � 2T (Hn+1=2
i ) + T (Hn+1=2

i�1 )] = 0; (12)
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where Hn+1=2
i = (Hn

i +Hn+1
i )=2, or an Adams-Bashford three-level method,

3

2

Hn+1
i �Hn

i

�t
�

1

2

Hn
i �Hn�1

i

�t

�
�

��x2
[T (Hn+1

i+1 )� 2T (Hn+1
i ) + T (Hn+1

i�1 )] = 0: (13)

To close the problem statement the function T (H) must be de�ned. For

a pure material with a melting temperature Tm, the function is de�ned as;

T (H) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

H=Cp; H < CpTm;

Tm; CpTm � H � CpTm + L;

(H � L)=Cp; H > CpTm + L;

which is a piece-wise linear relationship between H and T (Fig. 2). This

problem has been solved with a standard Newton method where the Jacobian

is formed [7, 8]. It is our goal to construct a Newton-based method which

easily extends to nonisothermal solidi�cation problems by sidestepping the

need to form the true Jacobian.

Moving to a more complex multicomponent system, such as a binary eu-

tectic alloy, the function T (H) becomes more complex. Assuming a straight

liquidus slope on the phase diagram we have the following temperature-

concentration relationship,

T = Tf +mlCl; (14)

11



where Tf is the fusion temperature of the pure solvent, ml is the slope of the

liquidus line, and Cl is the liquid solute concentration. Assuming thermody-

namic equilibrium holds at the solid-liquid interface results in the following

relationship for the solute concentration in the solid at the interface,

Cs = kCl; (15)

where k is the partition coe�cient. In nonisothermal solidi�cation the region

0 < �s < 1 is referred to as the \mushy zone." In the mushy zone a local

scale model is used to account for solute di�usion in the solid [9, 10, 2]. This

local scale model de�nes the solute liquid concentration as a function of solid

volume fraction,

Cl = G(�s): (16)

Here a solution to the energy equation must be found which simultaneously

satis�es Eqs.(14) and (16), and H = CpT + (1� �s)L.

In this study we will use simple local scale models which assume either

complete solute di�usion in the liquid and no solute di�usion in the solid

(the Scheil assumption), or complete solute di�usion in both the liquid and

the solid (the lever rule). For a binary alloy (neglecting ow in the liquid),

these assumptions result in the following temperature-solid volume fraction

relationships.

�s = 1:0 �

 
Tf � Tl
Tf � T

!
�(1�k)

; (17)

for the Scheil assumption, and
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�s =

 
1:0�

 
Tf � T

Tf � Tl

!!
(

1

1� k
); (18)

for the lever rule.

The temperature function for a eutectic can be expressed as,

T (H) =

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

H=Cp; H < CpTeut;

Teut; CpTeut � H � CpTeut + (1� �s;eut)L;

(H � (1� �s)L)=Cp; CpTeut + (1� �s;eut)L � H � CpTl + L;

(H � L)=Cp; H > CpTl + L;

where Teut is the eutectic temperature.

For alloys, the additional complexity, as compared to pure materials, is

that in the mushy zone (CpTeut + (1 � �s;eut)L � H � CpTl + L) where one

must simultaneously satisfy the energy balance, the phase diagram, and a

local scale model. In this region a small nonlinear system must be solved

to extract T as a function of H. If the Schiel or lever assumptions hold,

the phase diagram and local scale model can be combined to give �s as a

function of T as in Eq.(17) or Eq.(18). Then the nonlinear system which

needs to be solved to extract T as a function of H in the mushy zone consists

of two equations, either Eq.(17) or Eq.(18) along with H = CpT +(1� �s)L.

For example, if the Schiel model is being used, then the solution to the two

equation nonlinear system,
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CpT + (1 � �s)L�H = 0;

�s +

 
Tf � Tl
Tf � T

!
�(1�k)

� 1:0 = 0; (19)

must be found at each �nite volume in the mushy zone. This is done with a

standard Newton iteration (typically in three to �ve iterations). For a binary

alloy possessing a more complicated phase diagram and/or local scale model,

solutions to a system of three nonlinear equations must be found, Eqs.(14)

and (16) along with H = CpT+(1��s)L. Again, this small nonlinear system

is solved only for cells in the mushy zone. For an N component alloy a system

of N+1 equations must be solved, Eq.(14), N-1 equations like Eq.(16) along

with H = CpT + (1 � �s)L.

The nonlinear functions resulting from the discretized energy equation

(not T (H)) play such an important role in describing the algorithm, we

de�ne them so as to avoid any confusion. The nonlinear functions are the

discretized equations at each grid cell. The functions for energy at cell i, Fi,

are

Fi =
Hn+1

i �Hn
i

�t
�

�

��x2

h
T (Hn+1

i+1 )� 2T (Hn+1
i ) + T (Hn+1

i�1 )
i
: (20)

In the next section we demonstrate that this function only needs to be evalu-

ated with the current solution, Hn, and a perturbed solution, Hn+�v (where

v is a general vector), to perform a Newton iteration. To evaluate Fi we need

to evaluate T (Hi�1); T (Hi) and T (Hi+1). For those control volumes which

reside in the mushy zone, a small nonlinear system needs to be solved. This
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local nonlinear iteration is inside our global outer Newton iteration. Again,

the local evaluation of Fi in the mushy zone for a multicomponent system

requires the solution to a small nonlinear system to extract T as a function of

H. The L2 norm of the nonlinear function, Fi, is used to declare convergence

of the nonlinear iteration within a time step..

4 Jacobian-Free Newton-Krylov Method

In this section we provide a detailed description of our nonlinear iterative

method. The discussion of Newton's method is standard. We will give some

description of a Krylov based linear iterative method in order to elucidate

the Jacobian-free aspect of the proposed method. We will not give a detailed

description of Krylov methods, for which we would recommend the following

texts [11, 12]. The nonlinear iteration scheme is an inexact, matrix-free

Newton-Krylov method. By inexact Newton we mean that the convergence

tolerance of the linear solver is proportional to the current nonlinear residual.

By matrix-free Newton-Krylov we mean that the required Jacobian-vector

product in each linear (Krylov) iteration is replaced by a �nite di�erence

approximation to the true Jacobian-vector product [13].

Newton's method requires the solution of the linear system

Jk�Hk = �F(Hk); Hk+1 = Hk + �Hk; (21)

where J is the Jacobian matrix, F(H) is the nonlinear system of equations,

H is the state vector, and k is the nonlinear iteration index. For our one-
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dimensional problem, discretized into N equations and N unknowns, we have

F(H) = fF1; F2; :::; Fi; :::; FNg; (22)

and

H = fH1;H2; :::;Hi:::;HNg; (23)

where i is the one-dimensional grid index. In vector notation, the (i; j)th

element of the Jacobian matrix is

Ji;j =
@Fi(H)

@Hj
: (24)

Forming each element of J requires taking analytic or discrete derivatives of

the system of equations with respect to H. This can be both di�cult and

time consuming for nonisothermal solidi�cation problems and for problems

with thermodynamic data in tabular form.

4.1 Matrix-free Approximation

In this study the Generalized Minimal RESidual (GMRES) [14] algorithm is

used to solve the linear system of equations given by Eq.(21). GMRES (or

any other Krylov method such as Conjugate Gradients) de�nes and initial

linear residual, r0 given an initial guess, �H0 (typically zero),

r0 = �F(H)� J�H0: (25)

Note that the nonlinear iteration index, k, has been dropped. This is because

the GMRES iteration is performed at a �xed k. l is the linear iteration index.

The lth GMRES iteration minimizes k J�Hl + F(H) k2 with a least squares
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approach. �Hl is constructed from a linear combination of the Krylov vec-

tors, fr0;Jr0; (J)2r0; :::; (J)l�1r0g, obtained during the previous l�1 GMRES

iterations. This linear combination of Krylov vectors can be written as,

�Hl = �H0 +
l�1X
j=0

�j(J)
jr0; (26)

where evaluating the scalars �j is part of the GMRES iteration.

Upon examining Eq.(26) we see that GMRES requires the action of the

Jacobian only in the form of matrix-vector products, which may be approx-

imated by [13];

Jv � [F(H+ �v)� F(H)] = �; (27)

where v is a general Krylov vector (i.e. one of fr0;Jr0; (J)2r0; :::; (J)l�1r0g),

and � is a small perturbation.

Equation (27) is simply a �rst order Taylor series expansion approxima-

tion to the Jacobian, J, times a vector, v. For illustration consider the two

coupled nonlinear equations F1(H1;H2) = 0; F2(H1;H2) = 0. The Jacobian

matrix is

J =

2
66666666664

@F1
@H1

@F1
@H2

@F2
@H1

@F2
@H2

3
77777777775
:

Our method never forms this matrix, we instead form a vector which approx-

imates this matrix multiplied by a vector. Working backwards from Eq.(27),

we have;
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F(H+ �v)�F(H)

�
=

0
BBBBBBBBBB@

F1(H1+�v1;H2+�v2)�F1(H1;H2)
�

F2(H1+�v1;H2+�v2)�F2(H1;H2)
�

1
CCCCCCCCCCA
:

Approximating F(H + �v) with a �rst order Taylor series expansion about

H, we have;

F(H+ �v)� F(H)

�
�

0
BBBBBBBBBBB@

F1(H1;H2)+�v1
@F1
@H1

+�v2
@F1
@H2

�F1(H1;H2)

�

F2(H1;H2)+�v1
@F2
@H1

+�v2
@F2
@H2

�F2(H1;H2)

�

1
CCCCCCCCCCCA
;

which simpli�es to; 0
BBBBBBB@

v1
@F1
@H1

+ v2
@F1
@H2

v1
@F2
@H1

+ v2
@F2
@H2

1
CCCCCCCA
= Jv:

This matrix-free approach has many unique capabilities. Namely, Newton-

like nonlinear convergence without forming or inverting the true Jacobian.

In practice we do form a matrix for preconditioning purposes, hence our al-

gorithm is not entirely matrix-free. However, since the matrix we form is far

simpler than the true Jacobian of the problem, our algorithm is Jacobian-free.

To complete the description of this technique we provide a prescription

for evaluating the scalar perturbation. In this study � is given by,
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� =
1

N jjvjj2

NX
m=1

bjHmj; (28)

where N is the linear system dimension and b is a constant whose magnitude

is within a few orders of magnitude of the square root of machine roundo�

(b = 10�5 for this study).

4.2 Preconditioning

Typically one uses a simple iterative method as a preconditioner to GMRES.

The purpose of preconditioning is to e�ciently cluster the eigenvalues of the

iteration matrix, which in turn will reduce the required number of GMRES

iterations. For example, for right preconditioning, The system that is solved

is

(JM�1)(M�H) = �F(H); (29)

where M symbolically represents the preconditioning matrix and M�1 the

inverse of the preconditioning matrix. The matrix M is chosen to be an

approximation to J. In practice, this inverse is only approximately realized

through some standard iterative method, and one may think of it more as

~M�1. The right preconditioned analog to Eq.(27) is;

J ~M�1v � [F(H+ � ~M�1v)�F(H)] = �: (30)

Solutions to Eq. (30) proceed in two steps;

1. Solve (iteratively, and not to convergence)My = v for y
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2. Perform Jy � [F(H+ �y)� F(H)] = �;

In our Jacobian-free Newton-Krylov method only the matrix M is formed

and only the matrix M is iteratively inverted. There are two choices to be

made here;

1. What linearization should be used to form M ?

2. What linear iterative method should be used to solve

My = v ?

We have already de�ned J as the matrix resulting from the Newton lin-

earization of our nonlinear system. Our stated goal is to avoid forming this

matrix, but to maintain Newton-like nonlinear convergence. The Jacobian

for the constant property Stefan problem is actually quite easy to form an-

alytically and has been done in Ref. [8]. For our one-dimensional problem

this is a tridiagonal matrix, with the following entries on each row;

Ji;i�1 =
@Fi

@Hi�1
= �

�

��x2
T 0(Hi�1);

Ji;i =
@Fi

@Hi
=

1

�t
+ 2

�

��x2
T 0(Hi);

Ji;i+1 =
@Fi

@Hi+1
= �

�

��x2
T 0(Hi+1): (31)
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Here, T 0 is the derivative (slope in Fig. 2) of the temperature function for

the Stefan problem. It is straightforward to see that,

T 0(H) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1=Cp; H < CpTm;

0; CpTm � H � CpTm + L;

1=Cp; H > CpTm + L;

We will use a constant value, T 0(H) = 1=Cp, for all values of enthalpy when

evaluating our preconditioning matrix M. Thus each row of our precondi-

tioning matrix is simply

Mi;i�1 = �
�

�Cp�x2
;

Mi;i =
1

�t
+ 2

�

�Cp�x2
;

Mi;i+1 = �
�

�Cp�x2
: (32)

This is not a signi�cant change from the exact Jacobian for the Stefan

problem, but it is a signi�cant change from the exact Jacobian matrix which

would result from a multicomponent nonisothermal solidi�cation problem. It

can be envisioned that computing accurate Jacobian elements in the mushy

zone would be quite complicated and costly as a result of the local nonlinear

systems which need to be solved. To use a standard Newton method one

would have to evaluate

T 0(H) = (1 +
@�s
@H

L)=Cp; (33)
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in the mushy zone. Our algorithm avoids this complexity by using the matrix-

free Jacobian-vector product approximation, and using a much simpler lin-

earization to form the preconditioning matrix, M .

An inexact Newton convergence tolerance is used on the preconditioned

GMRES method. This means that the level to which the linear problem is

solved is proportional to the level of convergence of the nonlinear problem.

This can be expressed as,

k Jk�Hk + F(Hk) k2<  k F(Hk) k2 : (34)

For this study  = 1:0�10�2 is used. Use of an inexact Newton tolerance will

prevent us from seeing the theoretically promised quadratic convergence in

the nonlinear iteration. However, as will be shown, super-linear convergence

is obtained. Additionally, we use a damped Newton update, Hk+1 = Hk +

d�Hk, where d is a scalar chosen such that the maximum change in enthalpy

does not exceed ten percent in any given Newton iteration.

To summarize, within each time step, an inexact Newton-GMRES itera-

tion is used to solve the nonlinear system arising from the implicit discretiza-

tion of an enthalpy based energy equation. This inexact Newton-GMRES it-

eration achieves Newton-like nonlinear convergence solely through a special

matrix-vector multiply routine in GMRES. The true Jacobian of the system

is never formed and never inverted. For completeness, and improved commu-

nication, we express our implicit algorithm in template form. For a detailed

GMRES template consult reference [11].
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Time Step Loop ( n is time step index )

Hn+1 = Hn (initial guess)

Form preconditioning matrix, M (Eq.(32)).

while (not converged) do ( Newton Loop)

( k is nonlinear iteration index)

If k = 1 form F(Hk)

while (not converged) do (GMRES Loop)

(l is linear iteration index)

solving (JkM�1)(M�Hk) = �F(Hk) for �Hk

Initial Krylov vector, v0 = �F(H1) (Eq.(25))

(build vl = JkM�1vl�1, lth Krylov vector )

preconditioning operation, iteratively solve My = vl�1 ! y

(�xed number of Symmetric Gauss-Seidel iterations)

matvec operation ) Jky � [F(Hk + �y)� F(Hk)] = �

Complete lth GMRES iteration, compute �j's (Eq.(26))

Linear Convergence ? (Eq.(34))

end (GMRES Loop)

Evaluate Newton damping scalar, d

Hk+1 = Hk + d�Hk

Evaluate F(Hk+1), Nonlinear Convergence ?

end (Newton Loop)

Hn+1 = Hk+1

time = time + �t

end (Time Step Loop)

23



5 Algorithm Performance

5.1 Pure Material Solidi�cation

For the �rst model problem we consider a 1-D pure material isothermal so-

lidi�cation problem, in the region 0 � x � 4, with Cp = � = � = 1:0. The

melting temperature, Tm is equal to 1.0 and the initial conditions for tem-

perature are 2.0. A grid of 50 uniform �nite volumes is used. At time equal

to zero, the left boundary is set to a temperature of zero, and solidi�cation

proceeds. To compare against the analytic solutions available for the in�nite

domain Stefan problem would require a time dependent boundary condition

on the right boundary of our �nite domain. We instead choose to maintain

the right boundary at T = 2:0 and use a solution at very small time step as

a base solution. Simulations are performed for L = 10; 1; and 0:1, which rep-

resent Stefan numbers ( St ) of 0.1, 1.0 and 10 respectively. E�ort for these

problems is measured as total linear solves and average number of Newton

iterations per time step. Accuracy is measured in two ways against a base

solution at a small time step. The �rst measure is front position, Xf , where

T = Tm. In this measure, if a �nite volume has the temperature T = Tm

then we take the center of that volume as Xf . If no �nite volume has the

temperature T = Tm then linear interpolation is used to de�ne Xf between

the two bounding �nite volume centers. The second measure is a global L2

norm measure given by,

L2 �

vuut NX
i=1

(
Ti � T base

i

Tm
)2 (35)
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In all simulations presented the inexact Newton tolerance from Eq.(34)

is  = 1:0 � 10�2 and the L2 norm of the nonlinear residual is required

to drop below 1:0 � 10�5. Tables 1, 2, and 3 display performance data for

St = 0:1; 1:0 and 10:0 respectively. All simulations are performed with the

�rst-order accurate time step. For all Stefan numbers the base solution is

computed with a second-order accurate time step and �t = 1:0�10�4. In all

simulations a time step \ramp" is used, whereby the initial time step is ten

percent of the �nal time step, and the �rst eight time steps are equivalent

to two �nal time steps. The �rst column gives the �nal time step used and

the factor by which this time step exceeds the explicit stability limit of the

di�usion operator (�texp = �x2

�2
). The second column displays the total

number of time steps required to reach the �nal simulation time, the third

column is the average number of Newton iterations per time step, and the

fourth column is the total number of linear systems which are solved ( one

per Newton iteration). Columns �ve and six are the accuracy measures. It

can be seen for all Stefan numbers that the number of Newton iterations

per time step scales only weakly with time step size. Our solution method

can therefore use large time steps and require fewer total linear solves. The

accuracy of these solutions also does not seem to be a strong function of time

step size. This is most likely a result of the strong nonlinear convergence

within a time step, and the fact that the front is captured naturally by our

algorithm. Observing the sixth column one can see the characteristic �rst-

order time step convergence. Figures 3, 4, and 5 exhibit enthalpy pro�les

for a large time step and a small time step from the three Stefan number

problems in the region 0 � x � 2. In all cases the front position is captured
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accurately over a large range of time steps.

Figure 6 displays the nonlinear convergence history at two di�erent time

steps for St = 0:1 and �t = 0:4. The nonlinear residual is de�ned asqPN
i=1(Fi(Hn))2. At time step 26 the front did not cross into a new cell,

while in time step 24 the front did move across a cell.

5.2 Binary Eutectic Solidi�cation

As a second model problem we consider a 1-D binary eutectic problem, which

has been adapted from Ref. [2], in the region 0 � x � 0:4. This problem is

done in dimensional form with Cp = 1000 J
kgK

; L = 4:0� 105 J
kg
; � = 2400 kg

m3

and � = 100 W
mK

. The liquidus temperature, at an initial solute concentration

of 5.0 % is, Tl = 904:2 K. The eutectic temperature is, Teut = 821:2 K, and

the melting temperature of the pure solvent is Tf = 921:2 K. The slope of

the liquidus line is ml = 3:4, and the partition coe�cient is k = 0:15. The

initial conditions for temperature is 905:2 K. At time equal to zero, the left

boundary is set to a temperature of 621:2 K, and solidi�cation proceeds.

Tables 4 and 5 present results for di�erent time step sizes, with the Scheil

local scale model, for N = 50 and N = 200, respectively. The results in both

tables are with �rst order time di�erencing. Again, we see all of the same per-

formance trends observed in the pure material Stefan problem. Adding the

complexity of the mushy zone to the temperature function, and the associ-

ated local nonlinear solves within this function, has not e�ected the algorithm

performance in a signi�cant way. In Table 5 very large time steps were used

as compared to the explicit stability limit. This does not appear to have had
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a signi�cant e�ect in terms of accuracy or computational e�ort.

It should be noted that for N = 200 and and a time step of 10 the eutectic

front is moving approximately one grid cell per time step on average. This

statement is arrived at knowing that 56 time steps were taken and that the

eutectic front has moved out past X = 0:1, which is 50 �nite volumes from

the left boundary. Since this eutectic front has a characteristic velocity,

Vfront, we refer to this simulation with N = 200 and time step of 10 as

having a front CFL of 1, i.e. (Vfront�t) / �x = 1. The �nal entry in

Table 5 is asymptotically running at a front CFL of 5, which means that the

solidi�cation front is moving an average of 5 grid cells per time step.

Figure 7 displays the nonlinear convergence history at two di�erent time

steps for N = 50 and �t = 20:0. During time step 31 the front does not

cross into a new cell, while in time step 28 the front does move into a new

cell.

Figure 8 is a plot of solid volume fraction, �s, for three di�erent solutions,

isolated around the front at time = 500, with N = 50. Here it is seen that

�s pro�les exhibit very little di�erence between a �t = 20:0 simulation and

a �t = 1:0 simulation. This is signi�cant since our method requires a factor

of 5.3 less linear solves (to reach time = 500) for a time step of 20. More

importantly, when a temporally second-order method (Crank-Nicolson) is

used for the �t = 20:0 simulation there is virtually no di�erence in the

solution when compared to the �t = 1:0 simulation. The second order

method requires the same number of linear solves to reach a time of 500, but

the L2 error of the second order method is 1:6 � 10�3 while the L2 error of

the �rst order method is 8:0 � 10�3. Also, a front CFL of 0.5 is observed
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for this problem with �t = 20:0. Our method can integrate with these large

time steps while maintaining accuracy since the front is naturally captured

with our enthalpy-based energy equation.

Finally, Table 6 presents results using the lever rule as the local scale

model on a grid of N = 50. In comparing Tables 4 and 6 we see very

little di�erence in the performance of the method with a di�erent local scale

models.

6 Conclusions

A new nonlinear iterative algorithm has been put forth for phase change

problems. The method possesses Newton-like super-linear convergence char-

acteristics with out forming the Jacobian from Newton's method. Enthalpy

is the dependent variable and phase change fronts evolve with out �xing front

positions. Our method conserves energy globally and locally for any size time

step. The performance of the method has been demonstrated on a variety

of pure material isothermal solidi�cation problems and on the nonisothermal

solidi�cation of a binary eutectic alloy with two simple local scale models.

Our method has demonstrated the ability to retain a high degree of accuracy

and e�ciency even when solidi�cation fronts are moving multiple grid cells

per time step.

28



7 Acknowledgments

This work was supported under the auspices of the U.S. Department of En-

ergy under DOE contract W-7405-ENG-36 at Los Alamos National Labora-

tory, and as part of the Accelerated Strategic Computing Initiative (ASCI).

References

[1] V.R. Voller. An Overview of Numerical Methods for Solving Phase

Change Problems. Advances in Numerical Heat Transfer, 1:341{375,

1996.

[2] C.R. Swaminathan and V.R. Voller. Towards a general numerical scheme

for solidi�cation systems. Int. J. Heat Mass Transfer, 40:2859, 1996.

[3] V.R. Voller, C.R. Swaminathan, and B.G. Thomas. Fixed Grid Tech-

niques for Phase Change Problems: A Review. Int. J. Num. Meth. Eng.,

30:875, 1990.

[4] P.R. McHugh and D.A. Knoll. Comparison of Standard and Matrix-

Free Implementations of Several Newton-Krylov Solvers. AIAA J.,

32(12):2394{2400, 1994.

[5] D.A. Knoll, P.R. McHugh, and D.E. Keyes. Newton-Krylov methods for

low Mach number compressible combustion. AIAA J., 34(5):961{967,

1996.

29



[6] R.W. Johnson, P.R. McHugh, and D.A. Knoll. High-order scheme im-

plementation using Newton-Krylov solution methods. Numerical Heat

Transfer, Part B, 31:295{312, 1997.

[7] C.T. Kelly and J. Rulla. Solution of the time discretized Stefan problem

by Newton's method. Nonlinear Analysis, Theory Methods and Appli-

cations, 14:851, 1990.

[8] V. Alexiades and A.D. Solomon. Mathematical Modeling of Melting and

Freezing Processes. Hemisphere, Washington, 1993.

[9] T.W. Clyne and W. Kurz. Solute redistribution during solidi�cation

with rapid state di�usion. Metallurgical Transactions A, 12:965, 1981.

[10] C.Y. Wang and C. Beckermann. A multiphase solute di�usion model

for dendritic solidi�cation. Metallurgical Transactions A, 24:2787, 1993.

[11] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing

Company, Boston, 1996.

[12] C.T. Kelly. Iterative Methods for Linear and Nonlinear Equations. SIAM

Frontiers in Applied Mathematics, Philidelphia, 1995.

[13] P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems

of equations. SIAM J. Sci. Stat. Comput., 11:450{481, 1990.

[14] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual

algorithm for solving non-symetric linear systems. SIAM J. Sci. Stat.

Comput., 7:856, 1986.

30



Table 1: Algorithm performance as a function of time step size on Stefan

problem, upto time = 8:0; St = 0:1; Xbase
f = 1:05

Explicit Fac. Number of Number of Total Front L2

and time steps Newton Its. Linear Position Error

Time step per time step Solves (Xf )

2, �t=1.0e-2 806 1.9 1533 1.05 6.0e-4

10, �t=5.0e-2 166 1.27 210 1.05 3.5e-3

20, �t=1.0e-1 86 1.68 145 1.05 6.2e-3

40, �t=2.0e-1 46 2.26 104 1.05 1.2e-2

80, �t=4.0e-1 26 3.54 94 1.05 2.2e-2
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Table 2: Algorithm performance as a function of time step size on the Stefan

problem, upto time = 4:0; St = 1:0; Xbase
f = 1:54

Explicit Fac. Number of Number of Total Front L2

and time steps Newton Its. Linear Position Error

Time step per time step Solves (Xf )

1, �t=5.0e-3 806 1.9 1550 1.54 2.6e-3

2, �t=1.0e-2 406 1.6 658 1.54 5.6e-3

4, �t=2.0e-2 206 1.3 261 1.53 1.2e-2

10, �t=5.0e-2 86 1.57 135 1.52 2.8e-2

20, �t=1.0e-1 46 2.0 92 1.49 5.8e-2

40, �t=2.0e-1 26 2.5 66 1.46 9.6e-2

Table 3: Algorithm performance as a function of time step size on the Stefan

problem, upto time = 2:0; St = 10:0 Xbase
f = 1:31

Explicit Fac. Number of Number of Total Front L2

and time steps Newton Its. Linear Position Error

Time step per time step Solves (Xf )

1, �t=5.0e-3 406 1.68 684 1.31 2.5e-3

2, �t=1.0e-2 206 1.19 245 1.31 5.4e-3

4, �t=2.0e-2 106 1.36 145 1.31 1.1e-2

10, �t=5.0e-2 46 1.78 82 1.30 2.8e-2

20, �t=1.0e-1 26 2.5 65 1.29 5.4e-2
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Table 4: Algorithm performance as a function of time step size on the Voller

binary eutectic problem, Scheil model, upto time = 500:0; N = 50; �texp =

0:768

Explicit Fac. Number of Number of Total Front L2

and time steps Newton Its. Linear Position Error

Time step per time step Solves �s = 0:5

0.32, �t=0.25 2006 1.02 2046 0.157

1.3, �t=1.0 506 1.4 708 0.157 4.0e-4

6.5, �t=5.0 106 2.55 270 0.1569 2.0e-3

13.0, �t=10.0 56 3.19 179 0.1567 4.1e-3

26.0, �t=20.0 31 4.32 134 0.1565 8.3e-3

130.0, �t=100.0 11 6.3 70 0.1564 2.9e-2
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Table 5: Algorithm performance as a function of time step size on the Voller

binary eutectic problem, Scheil model, upto time = 500:0; N = 200; �texp =

0:048

Explicit Fac. Number of Number of Total Front L2

and time steps Newton Its. Linear Position Error

Time step per time step Solves �s = 0:5

20.83, �t=1.0 506 2.22 1123 0.1572 6.4e-4

104.17, �t=5.0 106 4.0 424 0.1571 3.2e-3

208.33, �t=10.0 56 5.95 333 0.1570 6.4e-3

416.67, �t=20.0 31 7.35 228 0.1567 1.27e-2

1041.67, �t=50.0 16 8.68 139 0.1565 2.68e-2
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Table 6: Algorithm performance as a function of time step size on the Voller

binary eutectic problem, lever model, upto time = 500:0; N = 50; �texp =

0:768

Explicit Fac. Number of Number of Total Front L2

and time steps Newton Its. Linear Position Error

Time step per time step Solves �s = 0:5

0.32, �t=0.25 2006 1.02 2046 0.155 8.6e-5

1.3, �t=1.0 506 1.33 673 0.155 3.7e-4

6.5, �t=5.0 106 2.3 243 0.155 1.9e-3

13.0, �t=10.0 56 2.6 146 0.155 3.7e-3

26.0, �t=20.0 31 3.6 112 0.155 7.6e-3
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Figure 1: Pure material H(T ) relation, Tm = 0:5 and L = 0:4
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Figure 2: Pure material T (H) relation, Tm = 0:5 and L = 0:4
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Figure 3: Enthalpy pro�les at time = 8.0 for two di�erent time step sizes

(St = 0:1).
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Figure 4: Enthalpy pro�les at time = 4.0 for two di�erent time step sizes

(St = 1:0).
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Figure 5: Enthalpy pro�les at time = 2.0 for two di�erent time step sizes

(St = 10:0).
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Figure 6: Nonlinear convergence for St = 0:1, �t = 0:4, time step numbers

24 and 26.
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Figure 7: Nonlinear convergence for binary eutectic model problem, Scheil

local scale model, N = 50, �t = 20:0, time step numbers 28 and 31.
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Figure 8: Comparison of solid volume fraction solution for binary eutectic

model problem, Scheil local scale model, N = 50, �t = 1.0 and 20.0.

43


